Maize is the largest crop planted in China. Nine species of cyst nematodes have been reported to affect maize production. Heterodera zeae, H. avenae and Punctodera chalcoensis can cause significant maize yield losses annually (Luc et al. 2005). In 1971, the maize cyst nematode H. zeae was first detected in Rajasthan, India (Koshy et al. 1971). Subsequently, it has been reported in many other countries such as the United States, Greece, Pakistan, and Egypt. In China, H. zeae was first identified in the maize fields of Laibin City, Guangxi Zhuang Autonomous Region (Wu et al., 2017). Cui et al. (2020) identified H. zeae in a maize field of Yuzhou City, Henan Province of Central China in 2018. From 2018 to 2022, a survey of cyst-forming nematodes was conducted in Southwest China. Fifteen soil samples of about 500 g each were collected from Luding County, Ganzi Prefecture of Sichuan Province. No major aboveground symptoms were shown on maize, but a few females were observed on the roots of maize in one field. The cysts and second-stage juveniles (J2s) were collected from each soil sample using Cobb's screening gravity method. A total of 8.50±2.0 cysts per 100 ml of soil on the average were observed in the field. A thin subcrystalline layer was discernible only in young cysts. Morphological and molecular studies of cysts and J2s indicated that the nematodes were identified to be H. zeae in a maize-field. Morphologically, the cysts were in a lemon shape, light brown or pearly white in color. The vulval cone was prominent. Fenestra ambifenestrate, and semifenestra were separated by a fairly wide vulval bridge, fenestral length and width were variable, and the cyst wall was shown in a zigzag pattern. The J2s' body was in a vermiform, tapering at both ends, with a hyaline tail. Stylet was strongly developed with round or slightly anteriorly directed knobs. Morphological measurements of the cysts (n = 9) determined that the mean body length was 417.2 μm (403.6 to 439.4 μm), body width was 429.7 μm (397.6 to 456.9μm); length-width ratio was 1.4 (0.75 to 3); fenestra length was 525.3 μm (498.5 to 570.7 μm); and the mean semifenestra width was 458.6 μm (403.6 to 546.3 μm). Morphometric measurements of second-stage juveniles (n = 20) showed a body length of 419.7μm (355.8 to 492.5 μm); a stylet length of 20.8 μm (19.51 to 23.3μm); a tail length of 41.5 μm (20 to 49.4 μm); and a hyaline tail length of 20.7 μm (16.6 to 24 μm). The main morphological characteristics and measured values were basically consistent with those described by Cui et al. (2022), and all of which were similar to those of H. zeae. Amplification of DNA from random single cysts (n = 5) was conducted using the protocol described by Cui et al. (2022). The rDNA-internal transcribed spacer (ITS) was amplified and sequenced using a pair of universal primers TW81 (5'-GTTTCCGTAGGTGAA CCTGC-3') and AB28 (5'-ATATGCTTAAGTTCAGCGGGT-3'). The ITS sequences were deposited at GenBank with the accession number OR811029.1. Alignments of sequences showed an identity of 98% with H. zeae sequences from China (OP692769.2, MW785772.1) and the USA (GU145616.1), which were confirmed using a pair of species-specific primers HzF1 (5'-GGGGAGGTGAATGTGGG-3') and HzR1 (5'-CCTTTGGCAATCGGTGA-3') of H. zeae with a targeted PCR fragment of 393 bp (Cui et al. 2022). Pathogenicity was conducted and confirmed by infection and reproduction on maize. Seeds (cv. Zhengda 619) were sown in three pots that contained 150 ml of a sterile soil mixture (loamy soil: sand=1:1), and 5 cysts (103 eggs/cyst on the average) were inoculated in each pot at 25/30°C, under a 12-h dark/12-h light condition (Cui et al. 2023). Fifteen days after sowing, third- and fourth-stage juveniles were observed in the rootstained with acid fuchsin, and a total of 32 cysts per maize plant on the average were collected at 40 days after sowing. The new cysts' morphological and molecular characteristics were identical to the cysts from the original soil samples. To the best of our knowledge, this is the first report of H. zeae as a pathogen on maize in Sichuan Province, Southwest China. Our findings will be useful for management and further research of maize cyst nematodes.