Abstract

Stormwater harvesting (SWH) addresses the UN's Sustainable Development Goals (SDGs). Conventional stormwater control measures (SCMs) effectively remove particulate and colloidal contaminants from urban runoff; however, they fail to retain dissolved contaminants, particularly substances of concern like polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs), thereby hindering the SWH applicability. Here, inspired by protein folding in nature, we reported a novel biomimetic SCM for the efficient removal of dissolved PAHs and HMs from urban runoff. Lab-scale tests were conducted together with a more mechanistic investigation on how the contaminants were removed. By integrating hydrophobic organic chains with low-cost hydrophilic flocculant matrixes, our biomimetic flocculants achieved a 1.4–9.5 times removal of all detected dissolved PAHs and HMs, while enhancing the removal of a wide-spectrum of particulate and colloidal contaminants, compared to existing SCMs. Ecotoxicity, as indicated by newborn Daphnia magna as experimental organisms, was reduced from “acute toxicity” of the original runoff sample (toxic unit of ∼2.6) to “non-toxicity” (toxic unit < 0.4) of the treated water. The improved performance is attributed to the protein-folding-like features of the bioinspired flocculants providing: (i) stronger binding to PAHs (via hydrophobic association) and HMs (via coordination), and (ii) the ability of spontaneous aggregation. The bio-inspired approach in this work holds strong promise as an alternative or supplementary component in SCM systems, and is expected to contribute to sustainable water management practices in relation to SDGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call