BackgroundLaser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful tool for microanalysis of solid materials. Nevertheless, one limitation of the method is the lack of well-characterized homogeneous reference materials (RMs), such as BaF2 crystal and BaCO3 ceramics samples, making direct quantification difficult. This work presents a novel Direct Ink Writing (DIW) method to produce RMs for microanalysis. The Mg, Cr, Fe, Co, Ni, Cu, Y, Mo, Pr, Gd, Dy, Ho, Er, Tm, Yb, and Lu solutions were gravimetrically doped into BaCO3 by mixing with the dispersant and then cured with DIW techniques. (94) ResultsBaCO3 powder was combined with a dopant analyte to produce a printable slurry, aided by the use of a dispersant and cellulose. The resulting mixture was then printed using DIW equipment. The retention rates of the doped elements were investigated by internal and external standard method, and the results showed that they were completely dispersed in the solid material. After further optimization, it was found that there was no significant heterogeneity among the printed samples. LA-ICP-MS was used to analyze printed samples, to evaluate micro-scale homogeneity. The mass concentration of the doped element was determined by ICP-MS, verify its move closer to nominal value. Compared with the traditional reference materials preparation methods, the DIW technology greatly increased the sample homogeneity and the accuracy of the desired concentration. (132) SignificanceAs far as we know, there are few reports on the application of DIW method to prepare calibration standards. In brief, it is proved that the proposed method of preparing calibration standard by DIW technique to quantify analytes is valid and robust. This procedure provides great potential for LA-ICP-MS in-situ analysis in the field of well-prepared products, such as ceramic and crystal samples.(63)