Abstract

We present a method for achieving hyperspectral magnetic imaging in the extreme ultraviolet (EUV) region based on high-harmonic generation (HHG). By interfering two mutually coherent orthogonally-polarized and laterally-sheared HHG sources, we create an EUV illumination beam with spatially-dependent ellipticity. By placing a magnetic sample in the beamline and sweeping the relative time delay between the two sources, we record a spatially resolved interferogram that is sensitive to the EUV magnetic circular dichroism of the sample. This image contains the spatially-resolved magneto-optical response of the sample at each harmonic order, and can be used to measure the magnetic properties of spatially inhomogeneous magnetic samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call