Borneol can enhance the blood-brain barrier (BBB) permeability of some drugs and suppress the efflux transport of P-glycoprotein (P-gp), which will contribute to the brain delivery of salvianic acid A (SAA). The study aimed to develop an approach to improve the brain targeting delivery of SAA with the aid of borneol. "Borneol" was involved in SAA via esterified prodrug SAA borneol ester (SBE) and combined administration (SAA-borneol, SAA-B). Subsequently, the blood-brain transport of SAA through brain/blood distribution and P-gp regulation via expression and function assay were investigated in rats. The SBE and SAA-B-treated group received a three-fold brain concentration and longer t1/2 and retention period of active SAA than that of SAA alone (20.18/13.82 min vs. 6.48 min; 18.30/17.42 min vs. 11.46 min). In addition, blood to brain transport of active SAA in SBE was altered in comparison to that of SAA-B, ultimately resulting in a better drug targeting index (9.93 vs. 3.63). Further studies revealed that SBE-induced downregulation of P-gp expression occurred at the later stage of administration (60 min, P < 0.01), but SBE always showed a more powerful drug transport activity across BBB represented by Kp value of rhodamine 123 than SAA-B (30, 60 min, P < 0.05). The comparative results indicate that SBE exhibits prominent efficiency on SAA's targeting delivery through improved blood/brain metabolic properties and sustained inhibitory effect of "borneol" on P-gp efflux. Therefore, prodrug modification can be applied as a more effective approach for brain delivery of SAA.