Abstract

Salvianic acid A (SAA), as the main bioactive component of the traditional Chinese herb Salvia miltiorrhiza, has important application value in the treatment of cardiovascular diseases. In this study, a two-step bioprocess for the preparation of SAA from l-DOPA was developed. In the first step, l-DOPA was transformed to 3,4-dihydroxyphenylalanine (DHPPA) using engineered Escherichia coli cells expressing membrane-bound L-amino acid deaminase from Proteus vulgaris. After that, the unpurified DHPPA was directly converted into SAA by permeabilized recombinant E. coli cells co-expressing d-lactate dehydrogenase from Pediococcus acidilactici and formate dehydrogenase from Mycobacterium vaccae N10. Under optimized conditions, 48.3 mM of SAA could be prepared from 50 mM of l-DOPA, with a yield of 96.6%. Therefore, the bioprocess developed here was not only environmentally friendly, but also exhibited excellent production efficiency and, thus, is promising for industrial SAA production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.