The mechanism of structure formation in fibrous oxides with complex architectonics, including metal oxide nanoparticles, nanopores, and microcapillaries, was established. Synthesis of oxide fibres includes two stages. In the first stage, thermal transformation of the polymer matrix and dissociation of salts with formation of metal oxides take place in heat treatment up to 600° C. Structural transformations of the oxides in the fibres and alteration of their physicochemical properties take place in the second stage. The oxide fibres have high porosity, a developed surface, and high reactivity due to the nanosize factor. Based on calculation of the size of the metal oxide crystallites, it was found that crystallographic transformations of the oxides cause dispersion of matter. The structural transformations of fibrous oxides are accompanied by a change in the character of the porosity and pore size. The mechanisms obtained can be used to predict the properties and regulate manufacturing technology for nanostructural fibrous oxide materials.
Read full abstract