The optimal preparation conditions of Salmon decalcified bone matrix (S-DBM) were explored, and the properties of S-DBM bone particles and bone powder were studied respectively. The therapeutic effect of S-DBM on tibial defect in female Sprague Dawley (SD) rats was preliminarily verified. This study assessed the structural and functional similarities of Salmon bone DBM (S-DBM). The biocompatibility assessment was conducted using both in vivo and in vitro experiments, establishing an animal model featuring tibial defects in rats and on the L929 cell line, respectively. The control group, bovine DBM (bDBM), was compared to the S-DBM-treated tibial defect rats. Imaging and histology were used to study implant material changes, defect healing, osteoinductive repair, and degradation. The findings of our study indicate that S-DBM exhibits favorable repairing effects on bone defects, along with desirable physicochemical characteristics, safety, and osteogenic activity. The S-DBM holds significant potential as a medical biomaterial for treating bone defects, effectively fulfilling the clinical demands for materials used in bone tissue repair engineering.
Read full abstract