Summary In this paper, we introduce, for the first time, an analytical approach for evaluating the effect of confinement and well interference on the SAGD process and achieving a better understanding of the situation. In the well-confinement stage of SAGD, there is adjacent-chamber interference, the effective head of drainage decreases, and the heat-loss rate decreases or, in a conservative design, remains constant. Our objectives were to predict the oil-production rate, steam-injection rate, thermal efficiency, steam-chamber velocity, unsteady temperature profile, heat distribution, and the cumulative steam/oil ratio (CSOR). In this approach, heat transfer was coupled with fluid flow. The governing equations were Darcy's law, volumetric balance, and heat conduction—constitutive equations indicating the temperature dependence of some physical properties. Our model was developed on the basis of a moving-boundary problem. The predicted oil rate remained constant during the sideways-expansion phase, while the steam-injection rate had to be constantly increased. After a determined confinement time, the oil rate started to decline with time because the decreasing steam-chamber interface length was offset by a decreasing head. The unsteady temperature profiles from the model showed that lower temperatures were predicted ahead of the interface owing to the confinement effect. Also, the model showed that, for a small lateral well spacing, confinement occurred earlier and heat loss started decreasing sooner, resulting in a lower CSOR than for a large spacing. It was shown that, even though the oil rate declined faster in a confined model rather than in an unconfined model, the reservoir depleted faster, just like the angle between the steam-chamber interface and the horizon. The results were validated using experimental data reported in the literature.
Read full abstract