BackgroundFalls are the leading cause of injuries in older adults. Environmental objects (such as furniture, walls, and handrails) may act as hazards or facilitators to balance maintenance and safe landing. There is lack of objective evidence on how older adults interact with objects during falls. We addressed this gap by characterizing body part contacts with objects other than the floor during real-life falls in long-term care.MethodsWe analyzed videos of 1759 falls experienced by 584 residents to characterize the prevalence of contacts with objects before, during, and after fall initiation. Using generalized estimating equations, we compared the prevalence of falls with versus without contact to objects after fall initiation. Using linear mixed models, we tested for differences across body parts in the probability of contacting objects after fall initiation.ResultsIn nearly one-third of falls, interactions with objects (e.g., trips over objects, loss of support with objects) or with other people (e.g., being pushed by another person) had a primary role in causing imbalance and initiating the fall. After fall initiation, participants contacted objects in 60% of falls, with intentional hand contacts to objects via reach-to-grasp or bracing being the most common type of interaction (Probability ± SE = 0.32 ± 0.01), followed by unintentional impacts to the torso (0.21 ± 0.01) and head (0.16 ± 0.01). Intentional hand contact to an object was more common during forward than backward falls (p < 0.001), while head and torso contacts to objects were more common during backward and sideways falls than forward falls (multiple p values ≤ 0.003). The hand most often contacted chairs, wheelchairs or couches, followed by tables or counters, walls, other people, walkers, and handrails. The head, torso, and shoulder most often contacted a wall.ConclusionsMost falls in long-term care involved contacts with objects other than the ground, indicating that complex environments often accompany falls in long-term care. Higher probabilities of intentional hand contacts in forward falls, versus unintentional head and torso impacts in backward and sideways falls may reflect the influence of being able to visualize and adjust one’s falling patterns to nearby objects.
Read full abstract