Investigation of concurrent hydrological drought events is helpful for understanding the inherent mechanism of hydrological extremes and designing corresponding adaptation strategy. This study investigates concurrent hydrological drought in the Poyang lake-catchment-river system from 1960 to 2013 based on copula functions. The standard water level index (SWI) and the standard runoff index (SRI) are employed to identify hydrological drought in the lake-catchment-river system. The appropriate marginal distributions and copulas are selected by the corrected Akaike Information Criterion and Bayesian copulas selection method. The probability of hydrological drought in Poyang Lake in any given year is 16.6% (return period of 6years), and droughts occurred six times from 2003 to 2013. Additionally, the joint probability of concurrent drought events between the lake and catchment is 10.1% (return period of 9.9years). Since 2003, concurrent drought has intensified in spring due to frequent hydrological drought in the catchment. The joint probability of concurrent drought between the lake and the Yangtze River is 11.5% (return period of 8.7years). This simultaneous occurrence intensified in spring, summer and autumn from 2003 to 2013 due to the weakened blocking effect of the Yangtze River. Notably, although the lake drought intensified in winter during the past decade, hydrological drought in the catchment and the Yangtze River did not intensify simultaneously. Thus, this winter intensification might be caused by human activities in the lake region. The results of this study demonstrate that the Poyang lake-catchment-river system has been drying since 2003 based on a statistical approach. An adaptation strategy should be urgently established to mitigate the worsening situation in the Poyang lake-catchment-river system.