Our present study evaluated the underlying molecular-mechanism(s) associated with the observed enhanced transcript levels and concomitant functional activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (NtHMGR1), a rate-limiting enzyme of cytosolic mevalonate (MVA) pathway of terpenoids biosynthesis, by gibberellin A3 (GA3) treatment in model cultivated tobacco, Nicotiana tabacum L. Based on the transcription run-on and cordycepin chase assays, our results demonstrated that tobacco seeds-priming with GA3 causes a relative and significantly enhanced transcriptional rate and mRNA stability of NtHMGR1. Taken together, our study established that GA3 mediated transcriptional and post-transcriptional regulatory control as one of the mechanisms for the observed enhanced transcript-levels and consequently enhanced functional activity of NtHMGR1.