Abstract

The Cleavage Factor 1A (CF1A) complex, which is required for the termination of transcription in budding yeast, occupies the 3′ end of transcriptionally active genes. We recently demonstrated that CF1A subunits also crosslink to the 5′ end of genes during transcription. The presence of CF1A complex at the promoter suggested its possible involvement in the initiation/reinitiation of transcription. To check this possibility, we performed transcription run-on assay, RNAP II-density ChIP and strand-specific RT-PCR analysis in a mutant of CF1A subunit Clp1. As expected, RNAP II read through the termination signal in the temperature-sensitive mutant of clp1 at elevated temperature. The transcription readthrough phenotype was accompanied by a decrease in the density of RNAP II in the vicinity of the promoter region. With the exception of TFIIB and TFIIF, the recruitment of the general transcription factors onto the promoter, however, remained unaffected in the clp1 mutant. These results suggest that the CF1A complex affects the recruitment of RNAP II onto the promoter for reinitiation of transcription. Simultaneously, an increase in synthesis of promoter-initiated divergent antisense transcript was observed in the clp1 mutant, thereby implicating CF1A complex in providing directionality to the promoter-bound polymerase. Chromosome Conformation Capture (3C) analysis revealed a physical interaction of the promoter and terminator regions of a gene in the presence of a functional CF1A complex. Gene looping was completely abolished in the clp1 mutant. On the basis of these results, we propose that the CF1A-dependent recruitment of RNAP II onto the promoter for reinitiation and the regulation of directionality of promoter-associated transcription are accomplished through gene looping.

Highlights

  • The process of transcription can be divided into three principal steps; initiation, elongation and termination [1]

  • The termination of transcription, which is intimately linked to the cleavage and polyadenylation of precursor mRNA, exhibits a similar requirement for a group of termination factors organized into two macromolecular complexes called Cleavage-Polyadenylation-Factor (CPF) complex and Cleavage Factor-1 (CF1) complex in yeast [6,7,8,9,10]

  • Our results show that the CF1 termination complex affects the recruitment of the transcription enzyme RNAP II onto the promoter for reinitiation of transcription

Read more

Summary

Introduction

The process of transcription can be divided into three principal steps; initiation, elongation and termination [1]. The accomplishment of each of these steps during the RNAP II-mediated transcription cycle requires a number of accessory factors. The generally accepted view is that the initiation factors operate exclusively at the 59 end of a gene and are committed to starting the transcription cycle, while termination factors have a dedicated role in ending the transcription cycle at the 39 end of a gene. It is evident that at least some initiation factors are necessary for termination, and the termination factors likewise may have a role in the initiation or reinitiation step of the transcription cycle [10,11,12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call