Recently, there have been many attempts to use neural networks as a feedback controller. However, most of the reported cases seek to control Single-Input Single-Output (SISO) systems using some sort of adaptive strategy. In this paper, we demonstrate that neural networks can be used for the control of complex multivariable, rather than simply SISO, systems. A modified direct control scheme using a neural network architecture is used with backpropagation as the adaptive algorithm. The proposed algorithm is designed for Multi-Input Multi-Output (MIMO) systems, and is similar to that proposed by Saerens and Soquet [1] and Goldenthal and Farrell [2] for (SISO) systems, and differs only in the form of the gradient approximation. As an example of the application of this approach, we investigate the control of the dynamics of a submarine vehicle with four inputs and four outputs, in which the differential stern, bow and rudder control surfaces are dynamically coordinated to cause the submarine to follow commanded changes in roll, yaw rate, depth rate and pitch attitude. Results obtained using this scheme are compared with those obtained using optimal linear quadratic control.
Read full abstract