Absence of a prevalent laminar distribution of IPSPs in association cortical neurons of cat. J. Neurophysiol. 78: 2742-2753, 1997. The depth distribution of inhibitory postsynaptic potentials (IPSPs) was studied in cat suprasylvian (association) cortex in vivo. Single and dual simultaneous intracellular recordings from cortical neurons were performed in the anterior part of suprasylvian gyrus (area 5). Synaptic responses were obtained by stimulating the suprasylvian cortex, 2-3 mm anterior to the recording site, as well as the thalamic lateral posterior (LP) nucleus. Neurons were recorded from layers 2 to 6 and were classified as regular spiking (RS, n = 132), intrinsically bursting (IB, n = 24), and fast spiking (FS, n = 4). Most IB cells were located in deep layers (below 0.7 mm, n = 19), but we also found some IB cells more superficially (between 0.2 and 0.5 mm, n = 5). Deeply lying corticothalamic neurons were identified by their antidromic invasion on thalamic stimulation. Neurons responded with a combination of excitatory postsynaptic potentials (EPSPs) and IPSPs to both cortical and thalamic stimulation. No consistent relation was found between cell type or cell depth and the amplitude or duration of the IPSPs. In response to thalamic stimulation, RS cells had IPSPs of 7.9 +/- 0.9 (SE) mV amplitude and 88.9 +/- 6.4 ms duration. In IB cells, IPSPs elicited by thalamic stimulation had 7.4 +/- 1.3 mV amplitude and 84.7 +/- 14.3 ms duration. The differences between the two (RS and IB) groups were not statistically significant. Compared with thalamically elicited inhibitory responses, cortical stimulation evoked IPSPs with higher amplitude (12.3 +/- 1.7 mV) and longer duration (117 +/- 17.3 ms) at all depths. Both cortically and thalamically evoked IPSPs were predominantly monophasic. Injections of Cl- fully reversed thalamically as well as cortically evoked IPSPs and revealed additional late synaptic components in response to cortical stimulation. These data show that the amount of feed forward and feedback inhibition to cat's cortical association cells is not orderly distributed to distinct layers. Thus local cortical microcircuitry goes beyond the simplified structure determined by cortical layers.
Read full abstract