Abstract
We have used a single-cell based polymerase chain reaction (PCR) amplification technique to examine the gene expression pattern in single Hodgkin's and Reed-Sternberg (H&RS) cells from seven patients with Hodgkin's disease. Single cells were isolated from lymph nodes obtained at diagnosis (5 of 7 patients) or in first or second relapse (2 of 7 patients). Gene expression was examined by hybridization to a panel of 22 cDNA probes. Forty-nine H&RS cells (and 23 CD3+ or CD20+ lymphocytes as controls) from four patients with nodular sclerosing Hodgkin's disease (HD) and one patient each with lymphocyte predominant and mixed-cellularity HD were successfully analyzed by PCR. This analysis provides evidence that single H&RS cells can coexpress genes characteristic of several hematopoietic lineages (monocytes and lymphocytes). Genes characteristic of activated lymphoid cells are expressed in most H&RS cells. Heterogeneity of expression for certain genes between different cases was found and may eventually define molecular subgroups of HD. These findings indicate that H&RS cells of HD resemble activated hematopoietic cells. Phenotypically similar cells from different cases exhibit characteristic molecular differences. In one patient, 5 of 7 single RS cells showed identical p53 cDNA mutations at codon 246 on specific reverse transcriptase [RT]-PCR and sequencing of exons 5 through 8. The novel experimental approach may provide a valuable tool for understanding the molecular events in newly diagnosed Hodgkin's disease and progression of the disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.