This paper investigates an observer-based state estimation issue for discrete-time semi-Markovian jump neural networks with Round-Robin protocol and cyber attacks. In order to avoid the network congestion and save the communication resources, the Round-Robin protocol is used to schedule the data transmissions over the networks. Specifically, the cyber attacks are modeled as a set of random variables satisfying the Bernoulli distribution. On the basis of the Lyapunov functional and the discrete Wirtinger-based inequality technique, some sufficient conditions are established to guarantee the dissipativity performance and mean square exponential stability of the argument system. In order to compute the estimator gain parameters, a linear matrix inequality approach is utilized. Finally, two illustrative examples are provided to demonstrate the effectiveness of the proposed state estimation algorithm.
Read full abstract