Abstract

This paper investigates an observer-based state estimation issue for discrete-time semi-Markovian jump neural networks with Round-Robin protocol and cyber attacks. In order to avoid the network congestion and save the communication resources, the Round-Robin protocol is used to schedule the data transmissions over the networks. Specifically, the cyber attacks are modeled as a set of random variables satisfying the Bernoulli distribution. On the basis of the Lyapunov functional and the discrete Wirtinger-based inequality technique, some sufficient conditions are established to guarantee the dissipativity performance and mean square exponential stability of the argument system. In order to compute the estimator gain parameters, a linear matrix inequality approach is utilized. Finally, two illustrative examples are provided to demonstrate the effectiveness of the proposed state estimation algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call