Abstract
In this paper, the l2–l∞ state estimation problem is addressed for a class of delayed artificial neural networks under high-rate communication channels with Round-Robin (RR) protocol. To estimate the state of the artificial neural networks, numerous sensors are deployed to measure the artificial neural networks. The sensors communicate with the remote state estimator through a shared high-rate communication channel. In the high-rate communication channel, the RR protocol is utilized to schedule the transmission sequence of the numerous sensors. The aim of this paper is to design an estimator such that, under the high-rate communication channel and the RR protocol, the exponential stability of the estimation error dynamics as well as the l2–l∞ performance constraint are ensured. First, sufficient conditions are given which guarantee the existence of the desired l2–l∞ state estimator. Then, the estimator gains are obtained by solving two sets of matrix inequalities. Finally, numerical examples are provided to verify the effectiveness of the developed l2–l∞ state estimation scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.