Abstract
This paper investigates the problem of state estimation for discrete time-delayed genetic regulatory networks with stochastic process noises and bounded exogenous disturbances under the Round-Robin (RR) protocols. The network measurement outputs obtained by two groups of sensors are transmitted to two remote sub-estimators via two independent communication channels, respectively. To lighten the communication loads of the networks and reduce the occurrence rate of data collisions, two RR protocols are utilized to orchestrate the transmission orders of sensor nodes in two groups, respectively. The error dynamics of the state estimation is governed by a switched system with periodic switching parameters. By constructing a transmission-order-dependent Lyapunov-like functional and utilizing the up-to-date discrete Wirtinger-based inequality together with the reciprocally convex approach, sufficient conditions are established to guarantee the exponentially ultimate boundedness of the estimation error dynamics in mean square with a prescribed upper bound on the decay rate. An asymptotic upper bound of the outputs of the estimation errors in mean square is derived and the estimator parameters are then obtained by minimizing such an upper bound subject to linear matrix inequality constraints. The repressilator model is utilized to illustrate the effectiveness of the designed estimator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.