The paper investigates various methods of microfinishing and arrives at the best technique to produce a very smooth surface. Various setups, with and without oscillation, were developed, together with a microfinishing attachment used on conventional lathes and milling machines. The workpiece material used was an amorphous nickel-phosphorus Ni-P alloy. The surface roughness parameters, such as Sa, Sv, and Sp, were measured with the TalySurf CCI6000 instrument. For the measurement of the surface protrusions, an "analysis of islands" technique was used at various levels of cut-off. The 2BA method-machining below the workpiece axis with oscillation-turned out to be the most effective method applied because it had the highest density of protrusions while having the smallest value of surface roughness. Non-oscillation with the machining zone below the axis also becomes effective, indicating that repositioning can compensate for a lack of oscillation. Already, the very compact surface structure achieved with minimized depths in the valleys by the 2BA method supported the improvement in tribological performance and increase in load-carrying capacity, together with lubricant retention enhancement. These results show that the microfinishing process can be optimized by parameter tuning, and also, non-oscillating methods could come to be a practical alternative, probably reducing the complexity of equipment and cutting costs. Further studies need to be aimed at the scalability of these methods and their application to other materials and fields.
Read full abstract