Abstract

In this paper, an assessment of a topography measurement method for fracture surfaces of 10HNAP steel after bending-torsion fatigue tests was performed. Surface roughness was measured by using a non-contact Focus Variation Microscopy (FVM) technique in which the non-measured points (NMPs) and outliers (spikes) were removed by the application of general methods. The results revealed, that the optical measurement method introduced variations in the high-frequency errors, considered as noise within the selected bandwidth. Therefore, the minimization of the high-frequency noise (HFN) was proposed based on an extensive examination of ISO 25178 roughness parameters. Additionally, a general S-filter was applied, as recommended by international standards and commercial software. It was used to identify and remove noise from the measured data after pre-processing. Consequently, levelling and eliminating of NMPs and spikes was successfully performed. Subsequently, the results obtained by using various filters were compared to further assess the impact of different filtration bandwidths. Finally, the proposed procedure was validated by implementing different general functions, such as autocorrelation (ACF), power spectral densities (PSD), and texture direction (TD). It was concluded, that coupled characteristics, including profile and areal measurements, should be studied simultaneously since they are necessary to analyze the fracture surfaces comprehensively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.