For the first time, kinetic thermomagnetic extraction is a novel approach presented in this work. It required the application of four distinct variables: rotation speed (50, 75, and 100 rpm), magnetic field (0.8, 1.2, and 1.6 T), time interval (30, 60, and 90 min), and temperature (45, 55, and 65 °C). Numerous phytochemical categories were detected in the 81 crude chloroform extracts of green sweet bell pepper seeds that were collected, according to phytochemical analysis. Nine extracts were discovered to be linked to the coumarin chemical class and to have the same two extraction parameters: a 90-minute extraction duration and a 55 °C extraction temperature. To enable their coumarin contents to be chemically separated and chromatographically purified, two of these extracts containing coumarin were chosen. Four new phytocoumarins have been identified and their molecular structures distinguished using FTIR spectra, 1H-NMR, 13C-NMR, and mass analysis. By using MTT probing, it was discovered that these phytocoumarins exhibited anticancer activities against eight malignant populations and reduced oxidative stress in human SH-SY5Y populations. Similarly, the anti-inflammatory and antidiabetic properties were determined using three and two associated enzymes, respectively. The results demonstrated that the extracted phytocoumarins have exceptional oxidative stress-mitigating characteristics, ranging from 71.51 to 81.48 %, when compared to a positive control. Furthermore, they showed excellent cytotoxicity against the test malignant populations (IC50 values of 46.76-81.45 μg/ml). The isolates need to be taken into account as dual COX-2/5-LOX antagonists because they also showed a fascinating selective anti-inflammatory effect. The phytocoumarins under investigation have selectivity indices that are higher than those of the standards used, suggesting that they may have the ability to selectively block the COX2 enzyme that induces harmful inflammation. Compared to the standards, the phytocoumarins have a higher ability to block the catalytic activity of 5-LOX. This observation suggests that the phytocoumarins are powerful 5-LOX agents. Finally, they had a modest antidiabetic impact when tested against two blood-controlling enzymes. The authors came to the conclusion that the technique adopted is flexible and successful for extraction after modifying its components. Moreover, isolated phytocoumarins in general and natural-B1 in particular provide naturally derived solutions for oxidative stress and its associated diseases.