Abstract
We consider multi-terminal transport through a flake of rectangular shape of a two-dimensional topological insulator in the presence of an in-plane magnetic field. This system has been shown to be a second-order topological insulator, thus exhibiting corner states at its boundaries. The position of the corner states and their decay length can be controlled by the direction of the magnetic field. In the leads we assume that the magnetic field is absent and therefore we have helical one-dimensional propagating states characteristic of the spin-Hall effect. Using a low-energy effective Hamiltonian we show analytically that, in a two-terminal setup, transport can be turned on and off by a rotation of the in-plane magnetic field. Similarly, in a three terminal configuration, the in-plane magnetic field can be used to turn on and off the transmission between neighbouring contacts, thus realising a directional switch. Analytical calculations are supplemented by a numerical finite-difference method. For small values of the Fermi energy and field strength, the analytical results agree exceptionally well with the numerics. The effect of disorder is also addressed in the numerical approach. We find that the switching functionality is remarkably robust to the presence of strong disorder stemming from the topological nature of the states contributing to the electron transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.