Abstract

Topological insulators (TIs) are a new class of materials that resemble ordinary band insulators in terms of a bulk band gap but exhibit protected metallic states on their boundaries. In this modern direction, higher-order TIs (HOTIs) are a new class of TIs in dimensions d > 1. These HOTIs possess -dimensional boundaries that, unlike those of conventional TIs, do not conduct via gapless states but are themselves TIs. Precisely, an nth order d-dimensional higher-order TI is characterized by the presence of boundary modes that reside on its -dimensional boundary. For instance, a three-dimensional second (third) order TI hosts gapless (localized) modes on the hinges (corners), characterized by . Similarly, a second-order TI (SOTI) in two dimensions only has localized corner states (). These higher-order phases are protected by various crystalline as well as discrete symmetries. The non-equilibrium tunability of the topological phase has been a major academic challenge where periodic Floquet drive provides us golden opportunity to overcome that barrier. Here, we discuss different periodic driving protocols to generate Floquet HOTIs while starting from a non-topological or first-order topological phase. Furthermore, we emphasize that one can generate the dynamical anomalous π-modes along with the concomitant 0-modes. The former can be realized only in a dynamical setup. We exemplify the Floquet higher-order topological modes in two and three dimensions in a systematic way. Especially, in two dimensions, we demonstrate a Floquet SOTI (FSOTI) hosting 0- and π corner modes. Whereas a three-dimensional FSOTI and Floquet third-order TI manifest one- and zero-dimensional hinge and corner modes, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.