Abstract
We classify time-reversal breaking (class A) spinful topological crystalline insulators with crystallographic nonmagnetic (32 types) and magnetic (58 types) point groups. The classification includes all possible magnetic topological crystalline insulators protected by point group symmetry. Whereas the classification of topological insulators is known to be given by the $K$-theory in the momentum space, computation of the $K$-theory has been a difficult task in the presence of complicated crystallographic symmetry. Here we consider the $K$-homology in the real space for this problem, instead of the $K$-theory in the momentum space, both of which give the same topological classification. We apply the Atiyah-Hirzebruch spectral sequence (AHSS) for computation of the $K$-homology, which is a mathematical tool for generalized (co)homology. In the real-space picture, the AHSS naturally gives the classification of higher-order topological insulators at the same time. By solving the group extension problem in the AHSS on the basis of physical arguments, we completely determine possible topological phases including higher-order ones for each point group. Relationships among different higher-order topological phases are argued in terms of the AHSS in the $K$-homology. We find that in some nonmagnetic and magnetic point groups, a stack of two ${\mathbb{Z}}_{2}$ second-order topological insulators can be smoothly deformed into nontrivial fourth-order topological insulators, which implies nontrivial group extensions in the AHSS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.