We describe the mechanical, electronic, hydraulic, and structural design of a nonrecirculating hydroponic system. The system is particularly suited to studies at very low nutrient concentrations, for which on-line concentration monitoring methods either do not exist or are costly and limited to monitoring relatively few individual plants. Solutions are mixed automatically to chosen concentrations, which can be set differently for every pump fed from a master supply of deionized water and nutrient concentrates. Pumping rates can be varied over a 50-fold range, up to 400 liters per day, which suffices to maintain a number of large, post-seedling plants in rapid growth at (sub)micromolar levels of N and P. The outflow of each pump is divided among as many as 12 separate root chambers. In each chamber one may monitor uptake by individual plant roots or segments thereof, by measuring nutrient depletion in batch samples of solution. The system is constructed from nontoxic materials that do not adsorb nutrient ions; no transient shifts of nitrate and phosphate concentrations are observable at the submicromolar level. Nonrecirculation of solutions limits problems of pH shifts, microbial contamination, and cumulative imbalances in unmonitored nutrients. We note several disadvantages, principally related to high consumption of deionized water and solutes. The reciprocating pumps can be constructed inexpensively, particularly by the researcher. We also report previously unattainable control of passive temperature rise of chambers exposed to full sunlight, by use of white epoxy paint.