Disturbance may impact individual birds and ultimately bird populations. If animals avoid disturbed sites this may prevent them from being disturbed directly but may also negatively impact their movement patterns and energy budgets. Avoidance is, however, challenging to study, because it requires following individuals over large spatial scales in order to compare their movement rates between sites in relation to spatiotemporal variation in disturbance intensity. We studied how 48 GPS‐tracked non‐breeding Eurasian Oystercatchers Haematopus ostralegus used two neighbouring roost sites in the Wadden Sea. One roost site is highly influenced by seasonal recreational disturbance whereas the other is an undisturbed sandbar. We analysed roost choice and the probability of moving away from the disturbed roost site with regard to a seasonal recreation activity index, weekends and night‐time. Oystercatchers often chose to roost on the undisturbed site, even if they were foraging closer to the disturbed roost. The probability that Oystercatchers chose to roost on the disturbed site was negatively correlated with the recreation activity index and was lowest in the tourist season (summer and early autumn), indicating that birds used the site less often when recreation levels were high. Furthermore, the probability that birds moved away from the disturbed site during high tide was positively correlated with the recreation activity index. The choice to roost on the undisturbed site implies that birds must fly an additional 8 km during one high‐tide period, which equates to 3.4% of daily energy expenditure of an average Oystercatcher. Our study tentatively suggests that the costs of avoidance may outweigh the energetic cost of direct flight responses and hence that avoidance of disturbed sites requires more attention in future disturbance impact studies. Nature managers should evaluate whether high‐quality undisturbed roosting sites are available near foraging sites, and in our case closing of a section of the disturbed site during high tides in the tourist season may mitigate much disturbance impact.
Read full abstract