Abstract

BackgroundMixed-species groups in animals have been shown to confer antipredator, foraging and other benefits to their members that may provide selective advantages. In most cases, however, it is unclear whether functional benefits are a principal driver of heterospecific groups, or whether groups simply result from simultaneous exploitation of common resources. Mixed-species groups that form independently of environmental conditions may, however, evidence direct benefits of species associations. Bats are among the most gregarious mammals, with sometimes thousands of individuals of various species roosting communally. Despite numerous potential functional benefits of such mixed-species roosting groups, interspecific attraction has never been shown. To explore alternative explanations for mixed-species roosting, we studied roost selection in a speciose neotropical understory bat community in lowland rainforest in Costa Rica. Long term roost data were recorded over 10 years in a total of 133 roosts comprising both natural roosts and structurally uniform artificial roosts. We modelled bat roost occupancy and abundance in each roost type and in forest and pasture habitats to quantify the effects of roost- and environmental variability.ResultsWe found that bat species presence in natural roosts is predictable from habitat and structural roost parameters, but that the presence and abundance of other bat species further modifies roost choice. One third of the 12 study species were found to actively associate with selected other bat species in roosts (e.g. Glossophaga commissarisi with Carollia sowelli). Other species did not engage in communal roosting, which in some cases indicates a role for negative interspecific interactions, such as roost competition.ConclusionsMixed-species roosting may provide thermoregulatory benefits, reduce intraspecific competition and promote interspecific information transfer, and hence some heterospecific associations may be selected for in bats. Overall, our study contributes to an improved understanding of the array of factors that shape diverse tropical bat communities and drive the dynamics of heterospecific grouping in mammals more generally.

Highlights

  • Mixed-species groups in animals have been shown to confer antipredator, foraging and other benefits to their members that may provide selective advantages

  • When individuals of one species join a group of another species with which they share common predators, they may benefit from both protection within a larger group and increased vigilance provided by heterospecific group members

  • We argue that the functional benefits that apply to aggregations of bats in monospecific groups may in some cases be or even more beneficial for members of mixed-species roosting groups

Read more

Summary

Introduction

Mixed-species groups in animals have been shown to confer antipredator, foraging and other benefits to their members that may provide selective advantages. Mixedspecies groups are relatively common and well-studied in birds and fish [6, 7] In mammals, this phenomenon has received less attention and the best examples are mainly from primates [1, 2]. When individuals of one species join a group of another species with which they share common predators, they may benefit from both protection within a larger group and increased vigilance provided by heterospecific group members. When the group’s member species differ in resource utilization, the advantages of the association will not be diminished through increased competition, unlike in monospecific groups. Mixed-species groups may have significant positive impacts on the survival and fitness of their member species and perhaps significantly shape their ecological niches [2, 11, 12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call