The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyzed stabilities of silica-infiltrated zirconia surfaces after exposure to artificial aging (AA).Four zirconia materials with different translucencies (n = 40) were used, including low translucency 3 mol% Y-SZ (3Y-LT, Ceramill ZI, Amann Girrbach); high translucency 4 mol% Y-SZ (4Y-HT, Ceramill Zolid); and two high translucency 5 mol% Y-SZs (5Y-HT, Lava Esthetic, 3M and 5Y-SHT, Ceramill Zolid, FX white). Sintered specimens were exposed to 40 cycles of silica (SiO2) through room temperature atomic layer deposition (RT-ALD) using tetramethoxysilane (TMOS) and ammonium hydroxide (NH4OH). AA was applied for 15 h in an autoclave (134°C, 2 bar pressure). Stabilities of zirconia-silica surfaces were characterized in terms of hardness and Young's modulus using nanoindentation techniques and crystalline contents using x-ray diffraction (XRD) analyses. Silica deposition was also characterized by X-ray photoelectron spectroscopy (XPS).There was a significant effect of the interaction of materials and surface treatments on the hardness and Young's modulus values of zirconia-silica surfaces (p < 0.001). Silica deposition on zirconia surfaces improved the material resistance to degradation by AA.