Lithotripter shock waves are pressure pulses of microsecond duration with peak pressures of 35–120 MPa followed by a tensile wave. They are an established treatment modality for kidney and gallstone disease. Further applications are pancreatic and salivary stones, as well as delayed fracture healing. The latter are either on their way to become established treatments or are currently under investigation. Shock waves generate tissue damage as a side effect which has been extensively investigated in the kidney, the liver, and the gallbladder. The primary adverse effects are local destruction of blood vessels, bleedings, and formation of blood clots in vessels. Investigations on the mechanism of shock wave action revealed that lithotripters generate cavitation both in vitro and in vivo. An increase in tissue damage at higher pulse administration rates, and also at shock wave application with concomitant gas bubble injection suggested that cavitation is a major mechanism of tissue damage. Disturbances of the heart rhythm and excitation of nerves are further biological effects of shock waves; both are probably also mediated by cavitation. On the cellular level, shock waves induce damage to cell organelles; its extent is related to their energy density. They also cause a transient increase in membrane permeability which does not lead to cell death. Administered either alone or in combination with drugs, shock waves have been shown to delay the growth of small animal tumors and even induce tumor remissions. While the role of cavitation in biological effects is widely accepted, the mechanism of stone fragmentation by shock waves is still controversial. Cavitation is detected around the stone and hyperbaric pressure suppresses fragmentation; yet major cracks are formed early before cavitation bubble collapse is observed. The latter has been regarded as evidence for a direct shock wave effect.