The unfolded protein response (UPR), a highly conserved set of eukaryotic intracellular signaling cascades, controls the homeostasis of the endoplasmic reticulum (ER) in normal physiological growth and situations causing accumulation of potentially toxic levels of misfolded proteins in the ER, a condition known as ER stress. During evolution, eukaryotic lineages have acquired multiple UPR effectors, which have increased the pliability of cytoprotective responses to physiological and environmental stresses. The ER‐associated protein kinase and ribonuclease IRE1 is a UPR effector that is conserved from yeast to metazoans and plants. IRE1 assumes dispensable roles in growth in yeast but it is essential in mammals and plants. The Arabidopsis genome encodes two isoforms of IRE1, IRE1A and IRE1B, whose protein functional domains are conserved across eukaryotes. Here, we describe the identification of a third Arabidopsis IRE1 isoform, IRE1C. This protein lacks the ER lumenal domain that has been implicated in sensing ER stress in the IRE1 isoforms known to date. Through functional analyses, we demonstrate that IRE1C is not essential in growth and stress responses when deleted from the genome singularly or in combination with an IRE1A knockout allele. However, we found that IRE1C exerts an essential role in gametogenesis when IRE1B is also depleted. Our results identify a novel, plant‐specific IRE1 isoform and highlight that at least the control of gametogenesis in Arabidopsis requires an unexpected functional coordination of IRE1C and IRE1B. More broadly, our findings support the existence of a functional form of IRE1 that is required for development despite the remarkable absence of a protein domain that is critical for the function of other known IRE1 isoforms.
Read full abstract