Object formation is considered the aim of perceptual organization, but such a proposition has been neglected in empirical studies. In the current study, we investigated the role of object formation in configural superiority. Essentially, discrimination on bar orientations was enhanced by adding a right angle to each of the bars. Such facilitation is due to the emergent feature (EF) of closure formed by combining the bars with right angles. To study object formation, visual stimuli were generated by random dot stereograms to form objects or holes in 3D. Behaviorally, we found that the EF of closure facilitated oddball discrimination on objects, as demonstrated by previous studies, but did not facilitate oddball discrimination on holes with the same shape as objects. Multivariate pattern analysis of functional magnetic resonance imaging (fMRI) data showed that the EF of closure increased the object classification accuracy compared to the holes in the lateral occipital cortex (LOC), where object information is encoded, but not in the early visual cortex (EVC). The neural representations of objects and holes with and without EFs were further investigated using representational similarity analysis. The results demonstrate that in the LOC, the neural representations of objects with EFs showed a greater difference than those of the other three, that is, objects without EFs and holes with or without EFs. However, the uniqueness of objects with EFs was not observed in the EVC. Thus, our results suggest that the EF of closure, which leads to the configural superiority effect, only emerges for objects but not for holes, and only in the LOC but not the EVC. Our study provides the first empirical evidence suggesting that object formation plays an indispensable role in perceptual organization.