Abstract

To make sense of complex auditory scenes, the auditory system sequentially organizes auditory components into perceptual objects or streams. In the conventional view of this process, the cortex plays a major role in perceptual organization, and subcortical mechanisms merely provide the cortex with acoustical features. Here, we show that the neural activities of the brainstem are linked to perceptual organization, which alternates spontaneously for human listeners without any stimulus change. The stimulus used in the experiment was an unchanging sequence of repeated triplet tones, which can be interpreted as either one or two streams. Listeners were instructed to report the perceptual states whenever they experienced perceptual switching between one and two streams throughout the stimulus presentation. Simultaneously, we recorded event related potentials with scalp electrodes. We measured the frequency-following response (FFR), which is considered to originate from the brainstem. We also assessed thalamo-cortical activity through the middle-latency response (MLR). The results demonstrate that the FFR and MLR varied with the state of auditory stream perception. In addition, we found that the MLR change precedes the FFR change with perceptual switching from a one-stream to a two-stream percept. This suggests that there are top-down influences on brainstem activity from the thalamo-cortical pathway. These findings are consistent with the idea of a distributed, hierarchical neural network for perceptual organization and suggest that the network extends to the brainstem level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.