Parental environment can significantly influence a range of plant traits across different growth phases and developmental stages. The impact of parental salinity variability on offspring germination and environmental factor response still requires thorough investigation. Therefore, we investigated seeds of Tripolium pannonicum L. from low-saline (Cie) and high-saline (Ino) habitats to elucidate the germination potential and adaptation potential of progeny to varying salinity levels. Germination and growth experiments were conducted to analyze germination parameters, plant areas, water-related traits, the concentration of organic solutes, malondialdehyde, and the activity of crucial oxidative defence enzymes. In the germination experiment, Cie seeds demonstrated higher germination potential with longer germination time under 200–400 mM NaCl compare with Ino seeds. The Cie population achieved the highest shoot and roots area at 100 mM and 300 mM NaCl, respectively. The Ino population exhibited its highest shoot and roots area at 200 mM NaCl. The Ino population indicated an increase in stem cortex cell area at 400 mM NaCl. The Ino population enhanced the synthesis of osmolytes as part of the salinity tolerance mechanism. Antioxidant enzyme analysis indicated higher peroxidase activity in Ino and higher superoxide dismutase activity in Cie under salinity, suggesting distinct enzymatic roles in salinity adaptation between populations. Our findings highlight the critical role of parental environmental conditions in shaping progeny traits, enhancing germination potential, and enabling adaptation of progeny plants to diverse environmental niches. The study underscores population-specific responses to environmental factor, emphasizing the complexity of halophyte adaptation mechanisms to salinity.
Read full abstract