Abstract

Frequent interspecies transmission of human influenza A viruses (FLUAV) to pigs contrasts with the limited subset that establishes in swine. While hemagglutinin mutations are recognized for their role in cross-species transmission, the contribution of neuraminidase remains understudied. Here, the NA’s role in FLUAV adaptation was investigated using a swine-adapted H3N2 reassortant virus with human-derived HA and NA segments. Adaptation in pigs resulted in mutations in both HA (A138S) and NA (D113A). The D113A mutation abolished calcium (Ca2+) binding in the low-affinity Ca2+-binding pocket of NA, enhancing enzymatic activity and thermostability under Ca2+-depleted conditions, mirroring swine-origin FLUAV NA behavior. Structural analysis predicts that swine-adapted H3N2 viruses lack Ca2+ binding in this pocket. Further, residue 93 in NA (G93 in human, N93 in swine) also influences Ca2+ binding and impacts NA activity and thermostability, even when D113 is present. These findings demonstrate that mutations in influenza A virus surface proteins alter evolutionary trajectories following interspecies transmission and reveal distinct mechanisms modulating NA activity during FLUAV adaptation, highlighting the importance of Ca2+ binding in the low-affinity calcium-binding pocket.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.