Engineering practice has demonstrated that seal failure can result in severe leakage and wear, reducing the efficiency of hydraulic systems and even leading to major safety risks. Currently, analyses of the thermal aspect of seal interfaces are relatively limited, with most studies focusing on mechanical analysis. However, in actual applications, temperature has a significant impact on sealing performance. In this paper, nonlinear elastomechanics, viscous fluid mechanics, micro-contact mechanics, micro-deformation theory, and thermodynamics are coupled to establish a mixed lubrication model considering the thermal effect. The reliability of the mixed lubrication model is verified through experiments, and the temperature distribution of the oil film in the sealing area and the temperature distribution of the seal ring are simulated. Finally, the effects of the reciprocating speed, root mean square roughness, fluid medium pressure, and seal pre-compression on seal friction force and leakage are investigated. The results show that the heat generated in the sealing area accumulates at the bottom of the V-ring. Under the same conditions, compared with the instroke, the temperature-rise area of the outstroke is biased to the left and the increase in temperature is greater. In addition, the piston rod speed and the preliminary compression of the seal ring have a greater impact on the overall seal friction force and leakage. Under a lower seal pre-compression, the RMS roughness has a great influence on the leakage and friction in the outstroke, while the impact of the internal stroke is limited.
Read full abstract