Abstract

An advanced neutronics and thermal hydraulics nuclear code, called GNTHACP code, is designed and developed in LabVIEW as Graphical Neutronics and Thermal Hydraulics toolkit for 1100 MWe Advanced Chinese PWR (ACP-1000) nuclear power plant. The reactor neutronics model is developed using a nonlinear point reactor kinetics model, while, the reactor thermal hydraulics model is developed based on nonlinear fuel and coolant temperature dynamics. The heart of the GNTHACP code is the control rod reactivity model. Control rod reactivity banks are comprised of four power compensation banks G1, G2, N1, N2 and one temperature compensation bank R. The reactivity control configuration of these banks is highly nonlinear, complex and challenging in nature. The control rod reactivity model as a function of G1, G2, N1, N2 and R banks is optimized using two distinct techniques. The control rod reactivity model is optimized using Simplex Linear Programming (SLP) technique under constraints of reactor power as safety limit and control rod speed as maximum speed limit in LabVIEW. The control rod reactivity model is also optimized and investigated using nonlinear Sequential Quadratic Programming (SQP) technique under same constraints in LabVIEW. All the models are integrated and the state-of-the-art virtual instruments (VIs) are designed for cost function optimization, configuring models and calibration of model parameters in LabVIEW. The integrated model as graphical coupled neutronics and thermal hydraulics modeling code is optimized and validated against the Final Safety Analysis Report (FSAR) and different parameters of interest are investigated and proved within design limits as reported with CORCA and CORTH benchmark nuclear codes. The proposed code is stable, highly efficient and accurate as compared to other nuclear codes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call