Abstract
CDC (Continuous Damping Control) shock absorber is the typical representative of the stepless valve-controlled type, which has the advantages of low cost and stable performance. Based on the throttling characteristics of the CDC valve, the damping force mathematical model of the CDC shock absorber is established. Through simulation analysis, the indicator characteristics and speed characteristics of the CDC shock absorber under different input currents and speeds are obtained. A CDC shock absorber testbed is built to study damping characteristics, and the results are compared with the simulation results. The results show that the indicator diagram obtained by simulation and experiment is smooth without distortion, and the speed characteristic diagram is smooth without a large mutation point. The experimental values of damping force are slightly larger than the simulation values. The relative error between the simulation data and the experimental data is basically less than 10% and the model has high accuracy. When the input current is the same, the damping force increases with the increase of piston rod speed. When the speed of the piston rod is the same, the damping force of the rebound and compression stroke decreases with the increase of input current.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have