This study investigates the geophysical properties of the Abu Roash F Member (AR/F) as a potential unconventional oil reservoir in Heba Field, located in the eastern region of the Abu Gharadig Basin (Egypt). Analysis of seismic data reveals the influence of Late Cretaceous dextral wrenching tectonic activity, evidenced by the presence of ENE-WSW anticlinal folds and intersecting NW-SE as well as WNW-ESE extensional faults throughout the study area. This tectonic regime is believed to have played a significant role in the formation of micro-fractures within the AR/F carbonate, which can enhance the reservoir's potential by improving its permeability and porosity. Petrophysical assessment identifies favorable reservoir zones within specific depth intervals across multiple wells. These zones exhibit promising reservoir quality, characterized by low shale volume (below 0.20), which indicates a cleaner reservoir rock with less clay content. Additionally, the high total porosity (ranging from 0.20 to 0.25) and moderate effective porosity (ranging from 0.15 to 0.20) suggest that a substantial portion of the rock's pore space is available for storing hydrocarbons. The low water saturation (between 0.40 and 0.50) further supports the presence of hydrocarbons, as it indicates that the pores are not predominantly filled with water. Furthermore, the high hydrocarbon saturation (ranging from 0.50 to 0.60) confirms the significant presence of hydrocarbons within the reservoir. The quantitative assessment of these petrophysical properties across all analyzed wells further confirms the good reservoir quality and potential of the AR/F Member. The integration of seismic and petrophysical data provides a comprehensive understanding of the reservoir characteristics, highlighting the AR/F Member as a significant oil reservoir in the eastern border of the Abu Gharadig Basin, particularly in Heba Field. This study's findings complement the existing knowledge of oil-bearing formations in the region, suggesting that the AR/F Member could be a valuable addition to the basin's hydrocarbon resources. The results underscore the importance of further exploration and development of the AR/F Member to fully realize its potential as a major contributor to the area's oil production.
Read full abstract