The research on the formation factors of rock burst is one of the main research directions of rock mechanics in recent years, which is helpful to solve the problem of rock burst accidents. So, in this study, the calculation method of energy released during rock burst is first obtained by using different medium models, and then, the formation factors of rock bursts are obtained by comparing the calculation energy with the actual accident energy. The method of energy calculation utilizes the difference between elastoplastic and pure elastic models to innovatively quantify the specific values of energy released before and after the occurrence of the rock burst. It is considered that the stress and plastic zone state before the occurrence of rock burst have an important influence on the occurrence of the accident and are one of the formation factors, while the deviatoric stress field and butterfly-shaped plastic zone create conditions for greater energy release. In addition, the trigger stress constitutes another formation factor. The plastic zone state before rock failure is verified by the experimental test; the location distribution shape of acoustic emission (AE) events during the later stage of compression failure is approximately the same as theoretical result. The results also preliminarily indicated the fractal characteristics of acoustic emission events distribution before sample failure. The study obtained the formative factors of rock burst accident, which provides a new ideas and references for the research on the formation of rock bursts.