Abstract

Deep gob-side entry (DGSE) shows rock burst risk under the condition of kilometer depth and hard roof. Based on the established conditions of the Tengdong coal mine, theoretical analysis, microseismic (MS) monitoring, and numerical modeling were used to study the rock burst mechanism of DGSE. Results show that MS events mainly occurred on the solid side of DGSE and the intense dynamic load was mainly caused by the breaking of low hard roof strata, which can release 2.64 × 105 J elastic energy per meter. The surrounding stress of DGSE was asymmetrical due to the coal pillar yielding and hanging roof’s weight, and the load of coal pillar is negatively correlated with that of solid. Simulation shows the vertical stress evolution of coal pillar and solid shows significant diversity. Coal pillar’s vertical stress first drops sharply, and then increases gradually, finally stable at 10.6 MPa with the DGSE’s excavation. Contrarily, solid’s vertical stress gradually rises and was finally stable at 40.9 MPa. Under roof dynamic loading, the vibration velocity of the entry’s top was higher than that of the floor which was caused by the increase of the propagation distance and the reflection and diffraction effect of waves. The vibration velocity of the coal pillar was significantly higher than that of the solid which is because higher stress can lead to faster attenuation of vibration velocity. After dynamic loading, the coal pillar’s principal stress and principal stress difference decreased while that of the solid can be divided into two drop areas and one rising area. Periodic pressure relief that was carried out in the rising area can reduce the rock burst risk on the solid side of DGSE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call