Visual place recognition (VPR) is the ability to recognize locations in a physical environment based only on visual inputs. It is a challenging task due to perceptual aliasing, viewpoint and appearance variations and complexity of dynamic scenes. Despite promising demonstrations, many state-of-the-art (SOTA) VPR approaches based on artificial neural networks (ANNs) suffer from computational inefficiency. However, spiking neural networks (SNNs) implemented on neuromorphic hardware are reported to have remarkable potential for more efficient solutions computationally. Still, training SOTA SNNs for VPR is often intractable on large and diverse datasets, and they typically demonstrate poor real-time operation performance. To address these shortcomings, we developed an end-to-end convolutional SNN model for VPR that leverages backpropagation for tractable training. Rate-based approximations of leaky integrate-and-fire (LIF) neurons are employed during training, which are then replaced with spiking LIF neurons during inference. The proposed method significantly outperforms existing SOTA SNNs on challenging datasets like Nordland and Oxford RobotCar, achieving 78.6% precision at 100% recall on the Nordland dataset (compared to 73.0% from the current SOTA) and 45.7% on the Oxford RobotCar dataset (compared to 20.2% from the current SOTA). Our approach offers a simpler training pipeline while yielding significant improvements in both training and inference times compared to SOTA SNNs for VPR. Hardware-in-the-loop tests using Intel's neuromorphic USB form factor, Kapoho Bay, show that our on-chip spiking models for VPR trained via the ANN-to-SNN conversion strategy continue to outperform their SNN counterparts, despite a slight but noticeable decrease in performance when transitioning from off-chip to on-chip, while offering significant energy efficiency. The results highlight the outstanding rapid prototyping and real-world deployment capabilities of this approach, showing it to be a substantial step toward more prevalent SNN-based real-world robotics solutions.
Read full abstract