Abstract
While researchers have made notable progress in bio-inspired swimming robot development, a persistent challenge lies in creating propulsive gaits tailored to these robotic systems. The California sea lion achieves its robust swimming abilities through a careful coordination of foreflippers and body segments. In this paper, reinforcement learning (RL) was used to develop a novel sea lion foreflipper gait for a bio-robotic swimmer using a numerically modelled computational representation of the robot. This model integration enabled reinforcement learning to develop desired swimming gaits in the challenging underwater domain. The novel RL gait outperformed the characteristic sea lion foreflipper gait in the simulated underwater domain. When applied to the real-world robot, the RL constructed novel gait performed as well as or better than the characteristic sea lion gait in many factors. This work shows the potential for using complimentary bio-robotic and numerical models with reinforcement learning to enable the development of effective gaits and maneuvers for underwater swimming vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.