Abstract Background Glioblastoma multiforme is a highly malignant primary brain tumor with an average survival of 14 months and very limited therapeutic options. Glioma associated microglia and macrophages (GAMs) foster tumor growth by releasing several cytokines, which have only partly been identified. Here, we studied the chemokine (C-C motif) ligand 18 (CCL18), a chemokine which is only expressed in human, but not rodent GAMs, in a novel ex-vivo brain slice model including transplantation of human induced pluripotent stem cells (iPSC) derived human microglia (iMGL) and human glioma cells in to murine brain slices, which had been depleted of intrinsic murine microglia before. Material and Methods After establishing the humanized ex-vivo brain slice model, we performed immunohistochemical analysis (IHC) of growth and invasiveness, qrtPCR on glioma cells isolated by magnetic-activated cell sorting (MACS), functional assays measuring invasiveness, proliferation, migration and colony formation of glioma cells in vitro and in slice experiments. Corresponding studies on tumor growth and invasiveness were performed after treatment with a CCL18 neutralizing antibody, a CCR8 neutralizing antibodies and knockdown of CCR8, ACP5 (Acid Phosphatase 5) and PITPNM3 with small interfering RNA (siRNA) and short hairpin RNA (shRNA). QrtPCR, IHC and Westernblot analysis were performed on primary glioma specimens. We also conducted bioinformatic analyses, based on the TCGA GBM, GLIOVIS and GEPIA databases. Results We observed that CCL18 was highly expressed in GAMs, whereas CCR8 was only expressed in glioma cells. We identified the chemokine (C-C motif) receptor 8 (CCR8) as a functional receptor for CCL18 and ACP5 as an important down-stream signaling component in glioma cells. Activation of the CCL18/CCR8/ACP5 signaling pathway in human glioblastoma was associated with enhanced tumor growth and invasiveness. Conclusion GAMs derived CCL18 promoted glioma growth by activation of the CCR8/ACP5 axis in human glioma cells and therefore is a potential therapeutic target.
Read full abstract