Abstract

RNA G-quadruplex (GQs) sequences in 5'-UTRs of certain proto-oncogenes co-localize with hairpin (Hp) forming sequences resulting in intramolecular Hp-GQ conformational equilibria, which is suggested to regulate cancer development and progression. Thus, regulation of Hp-GQ equilibria with small molecules is an attractive but less explored therapeutic approach. Herein, two tetraphenylethene (TPE) derivatives, TPE-Py and TPE-MePy, were synthesized and their effect on Hp-GQ equilibrium was explored. FRET, CD and molecular docking experiments suggest that cationic TPE-MePy shifts the Hp-GQ equilibrium significantly towards the GQ conformer mainly through π-π stacking and van der Waals interactions. In the presence of TPE-MePy, the observed rate constant values for first and second folding steps were increased up to 14.6 and 2.6-fold, respectively. The FRET melting assay showed a strong stabilizing ability of TPE-MePy (ΔTm=4.36 °C). Notably, the unmethylated derivative TPE-Py did not alter the Hp-GQ equilibrium. Subsequently, luciferase assay analysis demonstrated that the TPE-MePy derivatives suppressed the translation efficiency by ∼5.7-fold by shifting the Hp-GQ equilibrium toward GQ conformers in the 5'-UTR of TRF2. Our data suggests that HpGQ equilibria could be selectively targeted with small molecules to modulate translation for therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.