Binding of [Ru(phen)2ttbd]2+ (phen = 1,10-phenanthroline, ttbd = 4-(6-propenylpyrido-[3,2-a]- phenzain-10-yl-benzene-1,2-diamine) to the RNA triplex poly(U-A*U) (herein “-” and “*” refer to the Watson-Crick and Hoogsteen binding, respectively) and the duplex poly(A-U) have been investigated by spectral technology and viscosity method. Analysis of spectral titrations and viscosity experiments as well as melting measurements suggest that [Ru(phen)2ttbd]2+ binds to the studied RNA triplex and duplex through intercalation, while its binding constant toward the triplex is greater than the duplex. Luminescent titrations indicate that [Ru(phen)2ttbd]2+ can act as a molecular “light switch” for the two RNAs and the switch effect can be detected by the naked-eye. Moreover, the “light switch” can be repeatedly cycled off and on by adjusting the pH of the solution, whereas color change in the case of the triplex is more significant compared with the duplex. To our knowledge, [Ru(phen)2ttbd]2+ is the first small molecule capable of serving as a pH-controlled reversible visual molecular “light switch” for both the RNA triplex poly(U-A*U) and duplex poly(A-U). Thermal denaturation experiments suggest that [Ru(phen)2ttbd]2+ can obviously increase the triplex stabilization, while it stabilizing third-strand is more marked in comparison with the template duplex of the triplex, indicating this complex preferentially binds to third-strand. The obtained results may be useful for understanding the binding of Ru(II) polypyridyl complexes to RNAs.