BackgroundShort-term trials have shown a reduction in liver fat when saturated fatty acids (SFAs) are substituted with polyunsaturated fatty acids (PUFA), or with low-glycemic carbohydrates. However, few cohort studies have been conducted to investigate the associations of replacing SFA and SFA-rich foods with different macronutrients and foods in more severe stages of liver disease; nonalcoholic fatty liver disease (NAFLD) cirrhosis and hepatocellular carcinoma (HCC). ObjectivesTo investigate associations between the substitution of SFA and SFA-rich foods with other macronutrients and foods and NAFLD cirrhosis and HCC in a middle-aged to elderly Swedish population of n = 77,059 males and females. MethodsTime-to-event analyses were performed to investigate associations between the food and macronutrient substitutions and NAFLD cirrhosis and HCC. Multivariable Cox regression models were constructed to estimate hazard ratios (HRs) with corresponding 95% confidence intervals (CIs). Statistical isocaloric and equal-mass substitutions were performed using the leave-one-out method. Prespecified nutrient and food substitutions of interest were SFA with carbohydrates, SFA with fiber, SFA with PUFA, butter with margarine and vegetable oils, unprocessed red meat with fish, and milk with fermented milk. ResultsOver a median follow-up of 24 y, 566 cases of NAFLD cirrhosis and 205 cases of HCC were registered. Overall, dietary substitutions showed no clear associations with either NAFLD cirrhosis or HCC. Substituting SFA with carbohydrates showed an HR of 0.87 (95% CI: 0.74, 1.02) for HCC and 1.00 (95% CI: 0.89, 1.11) for NAFLD cirrhosis. Substituting milk with fermented milk showed an HR of 0.93 (95% CI: 0.85, 1.01) for HCC and 0.97 (95% CI: 0.92, 1.03) for NAFLD cirrhosis. ConclusionsNo clear associations were observed between diet and NAFLD cirrhosis or HCC. Although accompanied by low precision, possible lowered risks of HCC by substituting SFA with carbohydrates or milk with fermented milk might be of interest, but needs replication in other cohorts.