ObjectiveTo determine the association between body morphology, sacral skin microclimate and their impact on the development and risk of pressure injuries among patients in an intensive care unit. MethodologyA prospective observational exploratory study was conducted over 30 weeks. Repeat study observations occurred multiple times a week for 28 days or until discharge. Participant inclusion criteria were ≥ 18 years of age, expected intensive care length of stay > 24 h and intact skin over the sacrum region. SettingThe study was conducted in a 36-bed intensive care unit of a major metropolitan public hospital in Queensland, Australia. Outcome measuresPressure injuries were staged and independently verified according to the international pressure injury classification system. Pressure injury risk was determined by the Braden scale score and subepidermal oedema, using a subepidermal moisture scanner at the sacrum. ResultsOf the 93 participants recruited, an inverted triangle body shape (p =.049), a BMI > 25 kg/m2 (p =.008), a standard foam mattress type (p =.017) and increased length of stay (p <.001) were associated with an increased pressure injury risk according to subepidermal oedema. Participants with increased sacral skin temperature (p <.001), mechanical ventilation (p <.001), vasoactive drugs administered (p =.003), increased sequential organ failure assessment score (p =.047), neurovascular diagnosis (p =.031) and increased length of stay (p =.027) were associated with increased pressure injury risk according to the Braden scale score. ConclusionBody morphology and skin microclimate are associated with pressure injury risk during critical illness. Implications for Clinical PracticeSubepidermal oedema was associated with a patient’s shape, body mass index and mattress type, factors that directly influence the pressure loading and the skin, whereas the Braden scale was associated with sacral temperature and clinical measures of critical illness. Consideration of body morphology and skin microclimate in pressure injury risk assessment could lead to more specific prevention strategies targeting high risk patients.
Read full abstract