Extensive rovibrational line lists were computed for nine isotopologues of the CO molecule, namely, {sup 12}C{sup 16}O, {sup 12}C{sup 17}O, {sup 12}C{sup 18}O, {sup 13}C{sup 16}O, {sup 13}C{sup 17}O, {sup 13}C{sup 18}O, {sup 14}C{sup 16}O, {sup 14}C{sup 17}O, and {sup 14}C{sup 18}O in the ground electronic state with v ≤ 41, Δv ≤ 11, and J ≤ 150. The line intensity and position calculations were carried out using a newly determined piece-wise dipole moment function (DMF) in conjunction with the wavefunctions calculated from an experimentally determined potential energy function from Coxon and Hajigeorgiou. A direct-fit method that simultaneously fits all the reliable experimental rovibrational matrix elements has been used to construct the dipole moment function near equilibrium internuclear distance. In order to extend the amount and quality of input experimental parameters, new Cavity Ring Down Spectroscopy experiments were carried out to enable measurements of the lines in the 4-0 band with low uncertainty as well as the first measurements of lines in the 6-0 band. A new high-level ab initio DMF, derived from a finite field approach has been calculated to cover internuclear distances far from equilibrium. Accurate partition sums have been derived for temperatures up to 9000 K. In additionmore » to air- and self-induced broadening and shift parameters, those induced by CO{sub 2} and H{sub 2} are now provided for planetary applications. A complete set of broadening and shift parameters was calculated based on sophisticated extrapolation of high-quality measured data. The line lists, which follow HITRAN formalism, are provided as supplementary material.« less